通过阿里云向量检索 Milvus 版和通义千问快速构建基于专属知识库的问答系统

简介: 本文展示了如何使用阿里云向量检索 Milvus 版和灵积(Dashscope)提供的通用千问大模型能力,快速构建一个基于专属知识库的问答系统。在示例中,我们通过接入灵积的通义千问 API 及文本嵌入(Embedding)API 来实现 LLM 大模型的相关功能。

背景介绍

阿里云向量检索 Milvus 版是一款 Serverless 全托管服务,确保了与开源 Milvus 的完全兼容性,并支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模 AI 向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus 云服务成为多样化 AI 应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的 Attu 工具进行可视化操作,进一步促进应用的快速开发和部署。


阿里云向量检索 Milvus 版已开启免费公测。您可以在E-MapReduce控制台,选择 EMR Serverless > Milvus,进入 Milvus 页面创建入门版的实例,公测期间您可以免费试用 Milvus 服务。


前提条件


使用限制

请确保您的运行环境中已安装 Python 3.8或以上版本,以便顺利安装并使用 DashScope。


操作流程

准备工作

  1. 安装相关的依赖库。
pip3 install pymilvus tqdm dashscope


  1. 下载所需的知识库。
    本文示例使用了公开数据集 CEC-Corpus。CEC-Corpus 数据集包含332篇针对各类突发事件的新闻报道,语料和标注数据,这里我们只需要提取原始的新闻稿文本,并将其向量化后入库。
git clone https://github.com/shijiebei2009/CEC-Corpus.git


步骤一:知识库向量化

  1. 创建 embedding.py 文件,内容如下所示。
import os
import time
from tqdm import tqdm
import dashscope
from dashscope import TextEmbedding
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility


def prepareData(path, batch_size=25):
    batch_docs = []
    for file in os.listdir(path):
        with open(path + '/' + file, 'r', encoding='utf-8') as f:
            batch_docs.append(f.read())
            if len(batch_docs) == batch_size:
                yield batch_docs
                batch_docs = []
                
    if batch_docs:
        yield batch_docs
        
        
def getEmbedding(news):
    model = TextEmbedding.call(
        model=TextEmbedding.Models.text_embedding_v1,
        input=news
    )
    embeddings = [record['embedding'] for record in model.output['embeddings']]
    return embeddings if isinstance(news, list) else embeddings[0]


if __name__ == '__main__':
    
    current_path = os.path.abspath(os.path.dirname(__file__))   # 当前目录
    root_path = os.path.abspath(os.path.join(current_path, '..'))   # 上级目录
    data_path = f'{root_path}/CEC-Corpus/raw corpus/allSourceText'  # 数据下载git clone https://github.com/shijiebei2009/CEC-Corpus.git
    
    # 配置Dashscope API KEY
    dashscope.api_key = '<YOUR_DASHSCOPE_API_KEY>'
    
    # 配置Milvus参数
    COLLECTION_NAME = 'CEC_Corpus'
    DIMENSION = 1536
    MILVUS_HOST = 'c-97a7d8038fb8****.milvus.aliyuncs.com'
    MILVUS_PORT = '19530'
    USER = 'root'
    PASSWORD = '<password>'
    
    connections.connect(host=MILVUS_HOST, port=MILVUS_PORT, user=USER, password=PASSWORD)
    
    # Remove collection if it already exists
    if utility.has_collection(COLLECTION_NAME):
        utility.drop_collection(COLLECTION_NAME)
    
    # Create collection which includes the id, title, and embedding.
    fields = [
        FieldSchema(name='id', dtype=DataType.INT64, descrition='Ids', is_primary=True, auto_id=False),
        FieldSchema(name='text', dtype=DataType.VARCHAR, description='Text', max_length=4096),
        FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, description='Embedding vectors', dim=DIMENSION)
    ]
    schema = CollectionSchema(fields=fields, description='CEC Corpus Collection')
    collection = Collection(name=COLLECTION_NAME, schema=schema)
    
    # Create an index for the collection.
    index_params = {
        'index_type': 'IVF_FLAT',
        'metric_type': 'L2',
        'params': {'nlist': 1024}
    }
    collection.create_index(field_name="embedding", index_params=index_params)
    
    id = 0
    for news in tqdm(list(prepareData(data_path))):
        ids = [id + i for i, _ in enumerate(news)]
        id += len(news)
        
        vectors = getEmbedding(news)
        # insert Milvus Collection
        for id, vector, doc in zip(ids, vectors, news):
            insert_doc = (doc[:498] + '..') if len(doc) > 500 else doc
            ins = [[id], [insert_doc], [vector]]  # Insert the title id, the text, and the text embedding vector
            collection.insert(ins)
            time.sleep(2)


本文示例涉及以下参数,请您根据实际环境替换。

参数

说明

data_path

存放CEC-Corpus数据的路径。

COLLECTION_NAME

设置Miluvs Collection名称,您可以自定义。

dashscope_api_key

模型服务灵积的密钥。您可以在模型服务灵积控制台的API-KEY管理页面查看。

DIMENSION

向量维度。固定值为1536。

MILVUS_HOST

Milvus实例的公网地址。您可以在Milvus实例的实例详情页面查看。

MILVUS_PORT

Milvus实例的Proxy Port。您可以在Milvus实例的实例详情页面查看。默认为19530。

USER

配置为创建Milvus实例时,您自定义的用户。

PASSWORD

配置为创建Milvus实例时,您自定义用户的密码。


  1. 在 Attu 中您可以看到创建的 Collection,具体操作请参见 Attu操作指南


在本文示例中,我们将 Embedding 向量和新闻报道文稿一起存入 Milvus 中,同时构建索引类型采用了 IVF_FLAT,在向量检索时,同时可以召回原始文稿。


步骤二:向量检索与知识问答

数据写入完成后,即可进行快速的向量检索。在通过提问搜索到相关的知识点后,我们可以按照特定的模板将“提问 + 知识点”作为 prompt 向 LLM 发起提问。在这里我们所使用的 LLM 是通义千问,这是阿里巴巴自主研发的超大规模语言模型,能够在用户自然语言输入的基础上,通过自然语言理解和语义分析,理解用户意图。通过提供尽可能清晰详细的指令(prompt),可以获得更符合预期的结果。这些能力都可以通过通义千问来获得。


本文示例设计的提问模板格式为:请基于我提供的内容回答问题。内容是{___},我的问题是{___},当然您也可以自行设计合适的模板。


创建 answer.py 文件,内容如下所示。

import os
import dashscope
from dashscope import Generation
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection
from embedding import getEmbedding


def getAnswer(query, context):
    prompt = f'''请基于```内的报道内容,回答我的问题。
          ```
          {context}
          ```
          我的问题是:{query}
       '''
    
    rsp = Generation.call(model='qwen-turbo', prompt=prompt)
    return rsp.output.text


def search(text):
    # Search parameters for the index
    search_params = {
        "metric_type": "L2"
    }
    
    results = collection.search(
        data=[getEmbedding(text)],  # Embeded search value
        anns_field="embedding",  # Search across embeddings
        param=search_params,
        limit=1,  # Limit to five results per search
        output_fields=['text']  # Include title field in result
    )
    
    ret = []
    for hit in results[0]:
        ret.append(hit.entity.get('text'))
    return ret


if __name__ == '__main__':
    
    current_path = os.path.abspath(os.path.dirname(__file__))   # 当前目录
    root_path = os.path.abspath(os.path.join(current_path, '..'))   # 上级目录
    data_path = f'{root_path}/CEC-Corpus/raw corpus/allSourceText'
    
    # 配置Dashscope API KEY
    dashscope.api_key = '<YOUR_DASHSCOPE_API_KEY>'
    
    # 配置Milvus参数
    COLLECTION_NAME = 'CEC_Corpus'
    DIMENSION = 1536
    MILVUS_HOST = 'c-97a7d8038fb8****.milvus.aliyuncs.com'
    MILVUS_PORT = '19530'
    USER = 'root'
    PASSWORD = '<password>'
    
    connections.connect(host=MILVUS_HOST, port=MILVUS_PORT, user=USER, password=PASSWORD)
    
    fields = [
        FieldSchema(name='id', dtype=DataType.INT64, descrition='Ids', is_primary=True, auto_id=False),
        FieldSchema(name='text', dtype=DataType.VARCHAR, description='Text', max_length=4096),
        FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, description='Embedding vectors', dim=DIMENSION)
    ]
    schema = CollectionSchema(fields=fields, description='CEC Corpus Collection')
    collection = Collection(name=COLLECTION_NAME, schema=schema)
    
    # Load the collection into memory for searching
    collection.load()
    
    question = '北京中央电视台工地发生大火,发生在哪里?出动了多少辆消防车?人员伤亡情况如何?'
    context = search(question)
    answer = getAnswer(question, context)
    print(answer)


运行完成后,针对北京中央电视台工地发生大火,发生在哪里?出动了多少辆消防车?人员伤亡情况如何?的提问,会得到以下结果。


火灾发生在北京市朝阳区东三环中央电视台新址园区在建的附属文化中心大楼工地。出动了54辆消防车。目前尚无人员伤亡报告。



向量检索 Milvus 版用户交流钉钉群

1712734996586.png

相关实践学习
数据湖构建DLF快速入门
本教程通过使?数据湖构建DLF产品对于淘宝用户行为样例数据的分析,介绍数据湖构建DLF产品的数据发现和数据探索功能。
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
1天前
|
弹性计算 自然语言处理 开发工具
基于阿里云向量检索 Milvus 版和 LangChain 快速构建 LLM 问答系统
本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。
|
1天前
|
机器学习/深度学习 存储 数据可视化
构建个人知识库:Notion vs Roam Research
【5月更文挑战第12天】Notion和Roam Research是两款知名的知识库工具。Notion以其丰富的文本编辑、灵活的笔记组织和强大的集成能力脱颖而出,适合需要多平台同步和精美排版的用户。Roam Research则以双向链接和块概念为核心,构建知识网络,便于发现信息间的关联,适合深度学习和探索性思考。选择取决于个人需求和偏好。
|
1天前
|
安全 Devops 测试技术
深入了解阿里云云效DevOps:构建高效软件开发实践
阿里云云效DevOps,集成CI/CD与自动化测试,提升开发效率。支持持续集成确保代码质量,自动化测试加速交付,多环境及灰度发布保障安全可靠性。助团队构建高效开发实践,增强竞争力。
16 1
|
1天前
|
自然语言处理 API 开发工具
基于LangChain-Chatchat实现的本地知识库的问答应用-快速上手(检索增强生成(RAG)大模型)
基于LangChain-Chatchat实现的本地知识库的问答应用-快速上手(检索增强生成(RAG)大模型)
基于LangChain-Chatchat实现的本地知识库的问答应用-快速上手(检索增强生成(RAG)大模型)
|
1天前
|
存储 人工智能 自然语言处理
基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统
阿里云向量检索 Milvus 版现已无缝集成于阿里云 PAI 平台,一站式赋能用户构建高性能的检索增强生成(RAG)系统。您可以利用 Milvus 作为向量数据的实时存储与检索核心,高效结合 PAI 和 LangChain 技术栈,实现从理论到实践的快速转化,搭建起功能强大的 RAG 解决方案。
基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统
|
1天前
|
弹性计算 运维 监控
解密阿里云弹性计算:探索云服务器ECS的核心功能
阿里云ECS是核心计算服务,提供弹性云服务器资源,支持实例按需配置、集群管理和监控,集成安全防护,确保服务稳定、安全,助力高效业务运营。
60 0
|
1天前
|
存储 弹性计算 固态存储
阿里云服务器CPU内存配置详细指南,如何选择合适云服务器配置?
阿里云服务器配置选择涉及CPU、内存、公网带宽和磁盘。个人开发者或中小企业推荐使用轻量应用服务器或ECS经济型e实例,如2核2G3M配置,适合低流量网站。企业用户则应选择企业级独享型ECS,如通用算力型u1、计算型c7或通用型g7,至少2核4G配置,公网带宽建议5M,系统盘可选SSD或ESSD云盘。选择时考虑实际应用需求和性能稳定性。
143 6
|
1天前
|
域名解析 弹性计算 Linux
阿里云购买云服务器、注册域名、备案及绑定图文教程参考
本文为大家介绍了2024年购买阿里云服务器和注册域名,绑定以及备案的教程,适合需要在阿里云购买云服务器、注册域名并备案的用户参考,新手用户可通过此文您了解在从购买云服务器到完成备案的流程。
阿里云购买云服务器、注册域名、备案及绑定图文教程参考
|
1天前
|
存储 弹性计算 固态存储
阿里云服务器租用价格参考,云服务器收费标准与实时活动价格整理
阿里云服务器租用价格参考,本文更新了阿里云服务器最新的租赁费用,包括云服务器实时的活动价格与云服务器收费标准。经济型e实例云服务器4核16G10M带宽配置30.00元/1个月、90.00元/3个月,独享型通用算力型u1实例2核4G服务器仅需199元1年,轻量云服务器2核2G新用户专享价格61元/1年,计算型c7a实例2核4G配置特惠价625.68元/1年。更多阿里云服务器热门配置活动价格及云服务器租赁费用及活动价格见下文。
阿里云服务器租用价格参考,云服务器收费标准与实时活动价格整理
|
1天前
|
存储 编解码 安全
阿里云服务器计算型、通用型、内存型主要实例性能及选择参考
在阿里云的活动中,属于计算型实例规格的云服务器主要有计算型c7、计算型c7a、计算型c8a、计算型c8y、计算型c8i这几个实例规格,属于通用型实例规格的云服务器有通用型g7、通用型g7a、通用型g8a、通用型g8y、通用型g8i,属于内存型实例规格的云服务器有内存型r7、内存型r8a、内存型r8y、内存型r8i等实例。不同实例规格的云服务器在架构、计算、存储、网络、安全等方面有着不同,因此,其适用场景也有所不同。本文来详细介绍一下阿里云服务器计算型、通用型、内存型主要实例计算、存储等性能及其适用场景,以供参考。
阿里云服务器计算型、通用型、内存型主要实例性能及选择参考
http://www.vxiaotou.com