【MATLAB第34期】 MATLAB 2023年棕熊算法 BOA-LSTM时间序列预测模型 #含预测未来功能,以及优化结构层数及单双向类型 研究工作量丰富且新颖

简介: 【MATLAB第34期】 MATLAB 2023年棕熊算法 BOA-LSTM时间序列预测模型 #含预测未来功能,以及优化结构层数及单双向类型 研究工作量丰富且新颖

【MATLAB第34期】 MATLAB 2023年棕熊算法 BOA-LSTM时间序列预测模型 #含预测未来功能,以及优化结构层数及单双向类型 研究工作量丰富且新颖


一、代码优势


1.使用2023年棕熊算法BOA优化LSTM超参数(学习率,隐藏层节点,正则化系数,训练次数,结构层数,单双向结构类型)

2.目标函数考虑训练集和测试集,更加合理;运行结果稳定,可直接调用结果,且调用结果非常方便。

3.滑动窗口方法处理单列时间序列数据,考虑历史数据的影响。

4.代码一体化,一键运行;注释丰富,评价指标丰富,逻辑清晰,适合小白学习。

5.代码绘图丰富(除基础绘图以外,还包括训练LOSS图、超参数迭代图)、美观

6.命令行窗口可见运行过程的结果.

7.参数可在代码中设置,方便调试;优化超参数可以根据需求更改 。

8.含预测未来功能。

9.含结构层数,以及LSTM单双向选择功能

举例:

1.绘图美观,且包含对超参数随迭代次数变化的研究。

2.代码方便计算和调用,只需要在fun函数后面加超参数组合,就能得到结果。

[fitness1,net1,res1,info1] =  fun([0.005,50,0.005,50,1,2]); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数,1层结构,单向LSTM)

3.含预测未来功能

二、后期研究计划

后续将在博文中更新更丰富、功能更完整的作品,敬请期待。

1.多层LSTM结构优化,含单向LSTM/GRU和双向Bilstm混合模型**(已解决多层优化。混合优化暂未解决)**

2.更多超参数优化,含结构层数量、隐含层节点数、最小批处理数量、时间步数等**(已解决多层结构层优化,其余参数好实现,根据具体数据情况自行添加)**

3.含预测未来功能**(已解决)**

4.更多新的算法以及在基础上改进算法对比**(已解决,见35期)**。

5.loss内置函数修改

6.多场景应用(分类、回归、多输入多输出等等)


三、代码展示

%%  1.清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%%  2.导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');
%%  3.数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
%%  4.划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%%  5.数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%%  6.划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%%  7.数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  8.数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));
t_train = t_train';
t_test  = t_test' ;
%%  9.数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end
for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end
%%  10.优化算法参数设置
SearchAgents_no = 5;                   % 种群数量
Max_iteration = 5;                    % 最大迭代次数
lb = [1e-3, 10, 1e-4,20,1,1];                 % 参数取值下界(学习率,隐藏层节点,正则化系数,训练次数,隐含层层数,LSTM单双向结构)
ub = [1e-2, 80, 1e-3,100,4,2];                 % 参数取值上界(学习率,隐藏层节点,正则化系数,训练次数,隐含层层数,LSTM单双向结构)
dim = 6;% 优化参数个数
fobj=@(x)fun(x);  %适应度函数
%%  11.优化算法初始化
[Best_sol,Best_X,Convergence,BestNet,pos_curve]=BOA(SearchAgents_no,dim,Max_iteration,lb,ub,fobj)
%% 12.优化前LSTM运行结果
[fitness1,net1,res1,info1] =  fun([0.005,50,0.005,50]); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数)
predict_value1=res1.predict_value1;
predict_value2=res1.predict_value2;
true_value1=res1.true_value1;
true_value2=res1.true_value2;
i=1;
disp('-------------------------------------------------------------')
disp('LSTM结果:')
rmse1=sqrt(mean((true_value1(i,:)-predict_value1(i,:)).^2));
disp(['LSTM训练集根均方差(RMSE):',num2str(rmse1)])
mae1=mean(abs(true_value1(i,:)-predict_value1(i,:)));
disp(['LSTM训练集平均绝对误差(MAE):',num2str(mae1)])
mape1=mean(abs((true_value1(i,:)-predict_value1(i,:))./true_value1(i,:)));
disp(['LSTM训练集平均相对百分误差(MAPE):',num2str(mape1*100),'%'])
r2_1=R2(true_value1(i,:),predict_value1(i,:));
disp(['LSTM训练集R-square决定系数(R2):',num2str(r2_1)])
rmse2=sqrt(mean((true_value2(i,:)-predict_value2(i,:)).^2));
disp(['LSTM测试集根均方差(RMSE):',num2str(rmse2)])
mae2=mean(abs(true_value2(i,:)-predict_value2(i,:)));
disp(['LSTM测试集平均绝对误差(MAE):',num2str(mae2)])
mape2=mean(abs((true_value2(i,:)-predict_value2(i,:))./true_value2(i,:)));
disp(['LSTM测试集平均相对百分误差(MAPE):',num2str(mape2*100),'%'])
r2_2=R2(true_value2(i,:),predict_value2(i,:));
disp(['LSTM测试集R-square决定系数(R2):',num2str(r2_2)])
%% 13. 绘图
%% 14.优化后BOA-LSTM运行结果  
[fitness2,net2,res2,info2] =  fun(Best_X); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数)
i=1;
disp('-------------------------------------------------------------')
disp('BOA-LSTM结果:')
disp('BOA-LSTM优化得到的最优参数为:')
disp(['BOA-LSTM优化得到的隐藏单元数目为:',num2str(round(Best_X(2)))]);
disp(['BOA-LSTM优化得到的最大训练周期为:',num2str(round(Best_X(4)))]);
disp(['BOA-LSTM优化得到的InitialLearnRate为:',num2str((Best_X(1)))]);
disp(['BOA-LSTM优化得到的L2Regularization为:',num2str((Best_X(3)))]);
op_rmse1=sqrt(mean((op_true_value1(i,:)-op_predict_value1(i,:)).^2));
disp(['BOA-LSTM训练集根均方差(RMSE):',num2str(op_rmse1)])
op_mae1=mean(abs(op_true_value1(i,:)-op_predict_value1(i,:)));
disp(['BOA-LSTM训练集平均绝对误差(MAE):',num2str(op_mae1)])
op_mape1=mean(abs((op_true_value1(i,:)-op_predict_value1(i,:))./op_true_value1(i,:)));
disp(['BOA-LSTM训练集平均相对百分误差(MAPE):',num2str(op_mape1*100),'%'])
op_r2_1=R2(op_true_value1(i,:),op_predict_value1(i,:));
disp(['BOA-LSTM训练集R-square决定系数(R2):',num2str(op_r2_1)])
op_rmse2=sqrt(mean((op_true_value2(i,:)-op_predict_value2(i,:)).^2));
disp(['BOA-LSTM测试集根均方差(RMSE):',num2str(op_rmse2)])
op_mae2=mean(abs(op_true_value2(i,:)-op_predict_value2(i,:)));
disp(['BOA-LSTM测试集平均绝对误差(MAE):',num2str(op_mae2)])
op_mape2=mean(abs((op_true_value2(i,:)-op_predict_value2(i,:))./op_true_value2(i,:)));
disp(['BOA-LSTM测试集平均相对百分误差(MAPE):',num2str(op_mape2*100),'%'])
op_r2_2=R2(op_true_value2(i,:),op_predict_value2(i,:));
disp(['BOA-LSTM测试集R-square决定系数(R2):',num2str(op_r2_2)])
%% 15.BOA-LSTM绘图
%% 16.预测未来及绘图
通过data最后kim即15个数据作为输入,得到预测结果即第16个值 。  输入2-16,得到第17个值。
本次建议预测未来只取kim个值,即对应滑动窗口尺寸。  
其次,每次需要误差修正,不然用预测值再作为输入,会误差累计 。

未考虑结构层数和单双向优化结果

四、未考虑结构层数和单双向优化运行结果


LSTM结果:

LSTM训练集根均方差(RMSE):0.023407

LSTM训练集平均绝对误差(MAE):0.01781

LSTM训练集平均相对百分误差(MAPE):2.9834%

LSTM训练集R-square决定系数(R2):0.95768

LSTM测试集根均方差(RMSE):0.024046

LSTM测试集平均绝对误差(MAE):0.01902

LSTM测试集平均相对百分误差(MAPE):3.2605%

LSTM测试集R-square决定系数(R2):0.78619


BOA-LSTM结果:

BOA-LSTM优化得到的最优参数为:

BOA-LSTM优化得到的隐藏单元数目为:30

BOA-LSTM优化得到的最大训练周期为:59

BOA-LSTM优化得到的InitialLearnRate为:0.0060983

BOA-LSTM优化得到的L2Regularization为:0.00035327

BOA-LSTM训练集根均方差(RMSE):0.012984

BOA-LSTM训练集平均绝对误差(MAE):0.009747

BOA-LSTM训练集平均相对百分误差(MAPE):1.6228%

BOA-LSTM训练集R-square决定系数(R2):0.98596

BOA-LSTM测试集根均方差(RMSE):0.015044

BOA-LSTM测试集平均绝对误差(MAE):0.011762

BOA-LSTM测试集平均相对百分误差(MAPE):1.9885%

BOA-LSTM测试集R-square决定系数(R2):0.9183



五、考虑结构层数和单双向优化运行结果


LSTM结果:

LSTM训练集根均方差(RMSE):0.029838

LSTM训练集平均绝对误差(MAE):0.022429

LSTM训练集平均相对百分误差(MAPE):3.8673%

LSTM训练集R-square决定系数(R2):0.95401

LSTM测试集根均方差(RMSE):0.02557

LSTM测试集平均绝对误差(MAE):0.020291

LSTM测试集平均相对百分误差(MAPE):3.413%

LSTM测试集R-square决定系数(R2):0.77222


BOA-LSTM结果:

BOA-LSTM优化得到的最优参数为:

BOA-LSTM优化得到的隐藏单元数目为:19

BOA-LSTM优化得到的最大训练周期为:64

BOA-LSTM优化得到的InitialLearnRate为:0.0051093

BOA-LSTM优化得到的L2Regularization为:0.00057301

BOA-LSTM训练集根均方差(RMSE):0.019895

BOA-LSTM训练集平均绝对误差(MAE):0.015285

BOA-LSTM训练集平均相对百分误差(MAPE):2.597%

BOA-LSTM训练集R-square决定系数(R2):0.97333

BOA-LSTM测试集根均方差(RMSE):0.01963

BOA-LSTM测试集平均绝对误差(MAE):0.015393

BOA-LSTM测试集平均相对百分误差(MAPE):2.6051%

BOA-LSTM测试集R-square决定系数(R2):0.85712


六、分析


根据加入结构层数和单双向结构类型超参数优化时,在同等种群(5)迭代次数(5)的情况下,结果却相对差一些,且运行速度也慢一些。其实也很好理解,对于多优化参数相当于把简单的问题复杂化,不一定结构层数越多越好,反而会把本简单的网络结构复杂化,其次,待优化超参数多了,在种群数量和迭代次数不变的情况下,所对应的样本丰富性来说,反而下降了 。所以,在增加待优化超参数数量时,理应提高种群数量和迭代次数,但是对于简单的问题简单的数据,本末倒置。


七、代码获取


后台私信回复“34期”即可获取下载链接。

相关文章
|
6天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
6天前
|
存储 监控 NoSQL
Redis处理大量数据主要依赖于其内存存储结构、高效的数据结构和算法,以及一系列的优化策略
【5月更文挑战第15天】Redis处理大量数据依赖内存存储、高效数据结构和优化策略。选择合适的数据结构、利用批量操作减少网络开销、控制批量大小、使用Redis Cluster进行分布式存储、优化内存使用及监控调优是关键。通过这些方法,Redis能有效处理大量数据并保持高性能。
25 0
|
2天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
20 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
3天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
5天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
6天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
6天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
10 1
|
6天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
6天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
19 1
|
6天前
|
算法 调度
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
http://www.vxiaotou.com