学习笔记: 机器学习经典算法-多项式回归

简介: 机器学习经典算法-个人笔记和学习心得分享

多元线性回归分析 基于数据间存在线性关系的前提假设进行数据的建模和回归分析,但在实际应用场景中很少有能够满足具有强线性关系特点的数据集,更多地是表现出 非线性关系 的数据。多项式回归 方法基于线性回归的处理逻辑提出,主要应用于非线性关系数据的 回归预测任务。

1、算法基本过程

在线性回归中模型中,类如平面直线模型 $f(x) = ax + b$,其中就有 $x$ 为样本特征,$a,b$ 为模型参数。而对于一组满足非线性关系的数据,类如样本输出标记与样本特征满足二次曲线,使用线性回归生成的拟合模型就不如二次曲线的拟合效果好。同样是一个特征的样本,那么这个样本特征 $x$ 与样本输出标记 $y$ 的曲线关系可描述为 :

$y = ax^2 + bx +c$

1.2 多项式与线性关系式的转换

从样本的 一个特征 角度来理解,二次方程 $y = ax^2_{1} + bx_{1} +c $ 描述了样本的特征 $x_{1}$ 与样本输出标记 $y$ 之间的非线性关系。但如果将方程中的 $x^2_{1}$ 视作样本的另一个特征来看( 升维处理 ),为了方便识别换元成 $x_{2} = x_1$,一元二次方程此时变成了多元线性方程 $y = ax_2 + bx_{1} + c$ ,最后应用线性回归的方法求解多项式的参数,即 多项式回归 的基本过程。 多项式回归 的关键在于为原始数据样本添加新特征(升维),这些新特征来自原始特征的多项式组合,来转换成线性关系式,从而求解多项式参数。

### Prepare datasets
import numpy as np
x = np.random.uniform(-3,3,size = 100).reshape((-1,1))
y = .5 * x ** 2 + 1*x + 2 + np.random.normal(size =(100,1))

### 通过添加特征 x^2 的方式 转换多项式为 多元线性关系式并基于线性回归的方法进行参数求解
X = np.hstack([x**2,x])
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X,y)
lin_reg.coef_

2、scikit-learn 框架下的多项式回归处理流程

  • Step.1 基于原始特征构造新特征
### Raw datasets
import numpy as np
x = np.random.uniform(-3,3,size = 100).reshape((-1,1))
y = .5 * x ** 2 + 1*x + 2 + np.random.normal(size =(100,1))
### PolynomialFeatures 特征构造
from sklearn.preprocessing import PolynomialFeatures 
poly = PolynomialFeatures(degree=2) ### 构造最高二次幂的新特征
poly.fit(x)
X = poly.transform(x) ### 返回添加了构造特征的特征矩阵,分别是 (x^0,x^1,X^2构造特征列

原始特征数目与构造特征的数目关系
(1) 原始样本仅包含一个特征$x_1$,构造最高2次幂的特征将返回$(x_1^{0},x_1^{1},x_1^{2})$的结果。
(2) 原始样本包含两个以上的特征,如包含两个特征$x_1,x_2$,则构造最高2次幂的特征将返回$(1,x_1^{1},x_2^{1},x_1^{2}, x_1x_2 ,x_2^{2})$ 6 个特征构造结果。

import numpy as np
x = np.arange(1,11).reshape(5,2) ### Raw Features

from sklearn.preprocessing import PolynomialFeatures ### 特征构造
poly = PolynomialFeatures(degree=2) ### 构造二次幂样本特征
poly.fit(x)
poly.transform(x)   ### PolynomialFeatures


(3) 基于 2个初始特征构造最高 3 次幂的新特征, 将产生十种组合特征:
$$1,x_1,x_2$$
$$x_1^{2},x_2^{2},x_1x_2$$
$$x_1^{3},x_2^{3},x_1^{2}x_2,x_1x_2^{2}$$
在构造特征的时候,阶数越高,模型的参数发生指数级增长,意味模型复杂度越高

  • Step.2 基于添加了构造特征的数据进行线性回归
    from sklearn.linear_model import LinearRegression
    lin_reg = LinearRegression()
    lin_reg.fit(X,y)
    lin_reg.coef_
    

2.2 使用scikit-learn 的Pipline 流程处理多步骤的分析任务

### Prepare datasets
import numpy as np
x = np.random.uniform(-3,3,size = 100).reshape((-1,1))
y = .5 * x ** 2 + 1*x + 2 + np.random.normal(size =(100,1))

### make pipline
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
poly_reg = Pipeline([
    ("poly",PolynomialFeatures(degree=2)), ### 格式为 管道名,当前管道需执行的函数
    ("std_scaler",StandardScaler()),
    ("lin_reg",LinearRegression())
])

### use pipline to predict
poly_reg.fit(x,y)
poly_reg.predict(x)
目录
相关文章
|
1天前
|
机器学习/深度学习 分布式计算 并行计算
【机器学习】怎样在非常大的数据集上执行K-means算法?
【5月更文挑战第13天】【机器学习】怎样在非常大的数据集上执行K-means算法?
|
1天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】列举几种情况,在这些情况下K-means算法难以取得较好效果
【5月更文挑战第13天】【机器学习】列举几种情况,在这些情况下K-means算法难以取得较好效果
|
1天前
|
机器学习/深度学习 传感器 算法
【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?
【5月更文挑战第12天】【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?
|
1天前
|
数据采集 机器学习/深度学习 人工智能
【机器学习】在使用K-means算法之前,如何预处理数据?
【5月更文挑战第12天】【机器学习】在使用K-means算法之前,如何预处理数据?
|
1天前
|
机器学习/深度学习 算法 数据可视化
【机器学习】比较分层聚类(Hierarchical Clustering)和K-means聚类算法
【5月更文挑战第12天】【机器学习】比较分层聚类(Hierarchical Clustering)和K-means聚类算法
|
1天前
|
机器学习/深度学习 数据采集 算法
深入理解并应用机器学习算法:支持向量机(SVM)
【5月更文挑战第13天】支持向量机(SVM)是监督学习中的强分类算法,用于文本分类、图像识别等领域。它寻找超平面最大化间隔,支持向量是离超平面最近的样本点。SVM通过核函数处理非线性数据,软间隔和正则化避免过拟合。应用步骤包括数据预处理、选择核函数、训练模型、评估性能及应用预测。优点是高效、鲁棒和泛化能力强,但对参数敏感、不适合大规模数据集且对缺失数据敏感。理解SVM原理有助于优化实际问题的解决方案。
|
1天前
|
机器学习/深度学习 算法
理解并应用机器学习算法:决策树
【5月更文挑战第12天】决策树是直观的分类与回归机器学习算法,通过树状结构模拟决策过程。每个内部节点代表特征属性,分支代表属性取值,叶子节点代表类别。构建过程包括特征选择(如信息增益、基尼指数等)、决策树生成和剪枝(预剪枝和后剪枝)以防止过拟合。广泛应用在信贷风险评估、医疗诊断等领域。理解并掌握决策树有助于解决实际问题。
|
1天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】在使用K-means聚类算法时,如何选择K的值?
【5月更文挑战第11天】【机器学习】在使用K-means聚类算法时,如何选择K的值?
|
1天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】为什么K-means算法使用欧式距离度量?
【5月更文挑战第11天】【机器学习】为什么K-means算法使用欧式距离度量?
|
1天前
|
机器学习/深度学习 算法 数据可视化
【机器学习】描述K-means算法的步骤
【5月更文挑战第11天】【机器学习】描述K-means算法的步骤

热门文章

最新文章

http://www.vxiaotou.com