学习笔记: 机器学习经典算法-多元线性回归的正规方程解

简介: 机器学习经典算法-个人笔记和学习心得分享

简单线性回归刻画的是样本的 1维特征与样本输出标记之间的关系;对于样本的多特征,刻画多特征与输出标记之间的多元线性关系描述为$ y = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2}... + \theta_{n}x_{n}$。

1、多元线性回归的目标函数

求解多元线性回归的目标函数同简单线性回归一样,使预测结果与真实结果的误差尽可能小:
$$\sum^{m}_{i} {(\hat y^{(i)} - y^{(i)})^{2}}$$
$$ \hat y^{(i)} = \theta_{0}x_{0}^{(i)} + \theta_{1}x_{1}^{(i)} ... + \theta_{n}x_{n}^{(i)},x_{0}^{(i)} = 1$$

$$\theta = (\theta_{0} ,\theta_{1} ,... ,\theta_{n} )^{T},X^{(i)}= (x_{0}^{(i)},x_{1}^{(i)},...,x_{n}^{(i)})$$
$$\hat y^{(i)} = \theta \cdot X^{i}$$
推广到多样本形式
$X_{b} = \begin{bmatrix} 1&x_1^{(1)}&x_2^{(1)}&...&x_n^{(1)} \\ 1&x_1^{(2)}&x_2^{(2)}&...&x_n^{(2)} \\ ... \\ 1&x_1^{(m)}&x_2^{(m)}&...&x_n^{(m)} \end{bmatrix}, \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ ... \\ \theta_{n}\end{bmatrix}$
在$\theta$里,$\theta_{0}$对应回归关系式中的截距(intercept)或者说偏移,与样本特征无关;$\theta_{1}...\theta_{n}$是系数(coefficients),它们描述的是特征对样本输出标记的贡献程度。

$\therefore \hat y = X_{b} \cdot \theta$

带入$\hat y $,目标函数写为$\sum^{m}_{i} {(\hat y^{(i)} - y^{(i)})^{2}} = (y - X_b\cdot\theta)^{T} (y - X_b\cdot\theta)$

2、多元线性回归的数学解

2.1 正规方程解的数学表达式

通过使得目标函数$(y - X_b\cdot\theta)^{T} (y - X_b\cdot\theta)$尽可能得小来求解$\theta$,求解方法同简单线性回归一样使用最小二乘法,对函数中的每个$\theta _{i}$求偏导。由于运算对象从单个数变成了矩阵, 在矩阵上求导求极值的推导过程有点复杂(涉及线代以外的知识)。
多元线性回归的正规方程解(Normal Equation)
$$\theta = (X_{b}^{T}X_{b})^{-1}X_{b}^{T}y$$
缺点:正规方程解的时间复杂度高:$O(n^3)$,其中$n$不区分高维矩阵的行数或列数。
优点:不需要对数据进行归一化处理,最后的$\theta$就是原始数据的方程运算结果。

2.2 python实现

class LinearRegression:
    def __init__(self):
        """初始化Linear Regression 模型"""
        self.coef_ = None
        self.interception_ = None
        self._theta = None
    def fit(self,x_train,y_train):
        """根据训练集x_train,y_train训练Linear Regression 模型"""
        assert x_train.shape[0] == y_train.shape[0], "the size of x_train must be equal to the size of y_train"

        X_b = np.hstack([np.ones((len(x_train),1)),x_train])
        self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train);
        self.interception_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self

    def predict(self,x_predict):
        """给定待预测数据集x_predict,返回表示x_predict的结果向量"""
        assert self.interception_ is not None and self.coef_ is not None, "must fit before predict!"
        assert x_predict.shape[1] == len(self.coef_)," the feature number of x_predict must be equal to x_train"

        X_b = np.hstack([np.ones((len(x_predict),1)),x_predict])
        return X_b.dot(self._theta)

    def __repr__(self):
        return "LinearRegression()"


### 算法测试
### prepare data
from sklearn import datasets
boston = datasets.load_boston()
x = boston.data[ boston.target < 50 ]
y = boston.target[boston.target < 50]
from sklearn.model_selection import train_test_split
Train_X,Test_X,Train_Y,Test_Y = train_test_split(x,y,test_size= 0.2,random_state=666)

### test method
reg = LinearRegression()
reg.fit(Train_X,Train_Y)
reg.predict(Test_X)

3、scikit-learn框架下的回归求解

3.1 多元线性回归

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(Train_X,Train_Y)
lin_reg.coef_ ### 系数贡献度
lin_reg.intercept_ ### 关系式偏移
lin_reg.score(Test_X,Test_Y) ### 模型准确度得分

3.2 kNN Regressor

算法背景 ML- kNN(k近邻算法)

from sklearn.neighbors import KNeighborsRegressor
### kNN模型超参数网格搜索
knn_reg = KNeighborsRegressor()
param_grid = [
    {
        'weights':['uniform'],
        'n_neighbors':[i for i in range(1,11)]
    },
    {
        'weights':['distance'],
        'n_neighbors':[i for i in range(1,11)],
        'p':[i for i in range(1,6)]
    }
]
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(knn_reg,param_grid,n_jobs= 6, verbose = 2)
grid_search.fit(Train_X,Train_Y)
print(grid_search.best_estimator_)
### 使用网格搜索得到的最优超参数训练模型
knn_reg = grid_search.best_estimator_
knn_reg.predict(Test_X)
knn_reg.score(Test_X,Test_Y)

4、线性回归的可解释性

对于线性回归的系数(coefficients)来说,特征前面的系数为正意味着该特征与样本的输出标记呈正相关关系,系数为负表明负相关;系数的绝对值大小代表了相关程度。对系数按大小排序,从而用来筛选对样本的输出标记最相关的特征。因此,对于拿到的一组数据,不管数据的输出标记与特征之间有何关系,都可以首先通过线性回归的处理对数据的特征进行一定的了解。

5、线性回归的特点

① 典型的参数学习算法:
② 只能解决回归问题;对比kNN,既可以解决分类问题又能解决回归问题。
③ 对数据有前提假设:线性关系;只有数据集本身具有很强的线性关系,线性回归的结果才能更好(比如kNN也能处理回归,但回归误差就不如线性回归)。
⑤ 最大优点:线性回归是一个白盒子算法,训练出的模型和参数可以解释数据集的内在关联。

目录
相关文章
|
1天前
|
机器学习/深度学习 分布式计算 并行计算
【机器学习】怎样在非常大的数据集上执行K-means算法?
【5月更文挑战第13天】【机器学习】怎样在非常大的数据集上执行K-means算法?
|
1天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】列举几种情况,在这些情况下K-means算法难以取得较好效果
【5月更文挑战第13天】【机器学习】列举几种情况,在这些情况下K-means算法难以取得较好效果
|
1天前
|
机器学习/深度学习 传感器 算法
【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?
【5月更文挑战第12天】【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?
|
1天前
|
数据采集 机器学习/深度学习 人工智能
【机器学习】在使用K-means算法之前,如何预处理数据?
【5月更文挑战第12天】【机器学习】在使用K-means算法之前,如何预处理数据?
|
1天前
|
机器学习/深度学习 算法 数据可视化
【机器学习】比较分层聚类(Hierarchical Clustering)和K-means聚类算法
【5月更文挑战第12天】【机器学习】比较分层聚类(Hierarchical Clustering)和K-means聚类算法
|
1天前
|
机器学习/深度学习 数据采集 算法
深入理解并应用机器学习算法:支持向量机(SVM)
【5月更文挑战第13天】支持向量机(SVM)是监督学习中的强分类算法,用于文本分类、图像识别等领域。它寻找超平面最大化间隔,支持向量是离超平面最近的样本点。SVM通过核函数处理非线性数据,软间隔和正则化避免过拟合。应用步骤包括数据预处理、选择核函数、训练模型、评估性能及应用预测。优点是高效、鲁棒和泛化能力强,但对参数敏感、不适合大规模数据集且对缺失数据敏感。理解SVM原理有助于优化实际问题的解决方案。
|
1天前
|
机器学习/深度学习 算法
理解并应用机器学习算法:决策树
【5月更文挑战第12天】决策树是直观的分类与回归机器学习算法,通过树状结构模拟决策过程。每个内部节点代表特征属性,分支代表属性取值,叶子节点代表类别。构建过程包括特征选择(如信息增益、基尼指数等)、决策树生成和剪枝(预剪枝和后剪枝)以防止过拟合。广泛应用在信贷风险评估、医疗诊断等领域。理解并掌握决策树有助于解决实际问题。
|
1天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】在使用K-means聚类算法时,如何选择K的值?
【5月更文挑战第11天】【机器学习】在使用K-means聚类算法时,如何选择K的值?
|
1天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】为什么K-means算法使用欧式距离度量?
【5月更文挑战第11天】【机器学习】为什么K-means算法使用欧式距离度量?
|
1天前
|
机器学习/深度学习 算法 数据可视化
【机器学习】描述K-means算法的步骤
【5月更文挑战第11天】【机器学习】描述K-means算法的步骤

热门文章

最新文章

http://www.vxiaotou.com