m基于深度学习的32QAM调制解调系统相位检测和补偿算法matlab仿真

简介: m基于深度学习的32QAM调制解调系统相位检测和补偿算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
随着通信技术的飞速发展,高阶调制格式如32QAM(32-Quadrature Amplitude Modulation,32进制正交幅度调制)在高速数据传输中得到了广泛应用。然而,由于信道失真、噪声干扰等因素,接收端往往面临相位偏移和信号失真等问题。为了解决这些问题,基于深度学习的相位检测和补偿算法应运而生。

2.1 32QAM调制解调原理
在32QAM中,信号是通过同时改变两个正交载波(I路和Q路)的幅度来实现信息编码的。这两个载波的频率相同但相差90度相位。具体过程如下:

比特映射: 输入的6比特流被映射到32个离散的星座点上。每个星座点都有一个对应的二进制序列。

符号生成: 根据映射表,将每组6比特转换为相应的复数符号,这个符号包含有实部(I分量)和虚部(Q分量)。

s=I+jQs = I + jQs=I+jQ

其中,sss 是调制符号,III 和 QQQ 分别代表对应星座点的横纵坐标值。

幅度与相位调制: 通过对基带信号进行上变频并乘以相应的幅度因子,得到最终的模拟调制信号。

2.2 基于深度学习的相位检测和补偿算法
为了解决相位偏移问题,可以采用基于深度学习的相位检测和补偿算法。该算法通常包括两个主要步骤:相位检测和相位补偿。

   相位检测的目标是从接收到的信号中估计出相位偏移量。传统的方法通常基于最大似然估计或最小均方误差准则进行设计,但在复杂信道条件下性能受限。而基于深度学习的方法则能够通过学习大量数据来自动提取特征并进行相位偏移量的估计。

   具体来说,可以采用一个深度神经网络(DNN)来实现相位检测。该网络的输入是接收到的信号样本,输出是估计的相位偏移量。网络的结构可以根据具体任务进行设计,例如可以使用卷积神经网络(CNN)来提取信号的时域特征,或者使用循环神经网络(RNN)来处理序列数据。

   在训练阶段,需要准备大量带有标签的训练数据。标签是真实的相位偏移量,可以通过仿真或实际测量得到。然后,使用反向传播算法等优化方法来训练网络参数,使得网络能够准确地从输入信号中估计出相位偏移量。
   相位补偿的目标是根据估计出的相位偏移量对接收到的信号进行校正,以消除相位偏移的影响。传统的补偿方法通常是通过旋转接收到的信号来实现的。而在基于深度学习的算法中,可以将相位补偿过程集成到神经网络中。

     在得到较为准确的相位估计后,利用该信息对原始接收到的信号进行相位补偿。假设经过深度学习网络得到的相位估计为:



   具体来说,可以在神经网络的输出端添加一个旋转矩阵,该矩阵根据估计出的相位偏移量对接收到的信号进行旋转校正。这样,神经网络的输出就是经过相位补偿后的信号,可以直接用于后续的解调处理。

3.MATLAB核心程序
```for i = 1:length(SNR)
i
for j = 1:10
[i,j]
%产生信号
signal = round(rand(1,LEN));
signal_modulated1 = Modulator(signal,K);
signal_receive1 = awgn(signal_modulated1,SNR(i),'measured');
signal_receive2 = signal_receive1exp(sqrt(-1)phase);

    offset2   = func_phase_est_dnn(signal_receive2);%基于深度学习的相位估计

    RR        = signal_receive2*exp(-sqrt(-1)*mean2(offset2));
    %加相位补偿
    output    = DeModulator(RR,K);

    msgr      = ones(size(output));
    idx       = find(output<=0);
    msgr(idx) = 0;

    len         = length(find(signal==msgr));
    errrate(i,j)= 1-len/length(signal);
    %没有相位补偿
    output2     = DeModulator(signal_receive2,K);

    msgr2       = ones(size(output2));
    idx2        = find(output2<=0);
    msgr2(idx2) = 0;

    len2      = length(find(signal==msgr2));
    errrate2(i,j)= 1-len2/length(signal);

end

end

figure;
semilogy(SNR,mean(errrate2,2),'b-o');
hold on
semilogy(SNR,mean(errrate,2),'r-s');
grid on
xlabel('SNR');
ylabel('误码率');
legend('32QAM无相位补偿误码率','32QAM相位补偿误码率');
```

相关文章
|
2天前
|
机器学习/深度学习 算法 安全
m基于Q-Learning强化学习的路线规划和避障策略matlab仿真
MATLAB 2022a仿真实现了Q-Learning算法在路线规划与避障中的应用,展示了智能体在动态环境中学习最优路径的过程。Q-Learning通过学习动作价值函数Q(s,a)来最大化长期奖励,状态s和动作a分别代表智能体的位置和移动方向。核心程序包括迭代选择最优动作、更新Q矩阵及奖励机制(正奖励鼓励向目标移动,负奖励避开障碍,探索奖励平衡探索与利用)。最终,智能体能在复杂环境中找到安全高效的路径,体现了强化学习在自主导航的潜力。
8 0
|
3天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
3天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
20小时前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第18天】 随着人工智能技术的飞速发展,特别是深度学习在图像识别领域的突破性进展,自动驾驶技术已经从科幻走向现实。本文旨在探讨如何将基于深度学习的图像识别技术集成到自动驾驶系统中,以提升车辆的环境感知能力、决策效率及安全性。文中不仅回顾了当前自动驾驶中图像识别的关键挑战,还介绍了几种前沿的深度学习模型及其在处理复杂交通场景下的有效性。此外,本文还将讨论数据预处理、增强技术以及模型优化策略对提高自动驾驶系统性能的重要性。
|
23小时前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用进展
【5月更文挑战第18天】 随着计算机视觉技术的飞速发展,深度学习已成为图像识别任务的核心动力。本文综述了深度学习技术在图像识别领域的最新进展,包括卷积神经网络(CNN)的变种结构、迁移学习策略以及增强学习机制。通过分析现有文献和研究成果,本文揭示了深度学习模型在处理复杂图像数据时的优势和挑战,并提出了未来研究的潜在方向。
|
1天前
|
机器学习/深度学习 自然语言处理 算法
深度探索自适应学习率调整策略在深度学习优化中的应用
【5月更文挑战第17天】 在深度学习的复杂网络结构中,学习率扮演着至关重要的角色。一个合适的学习率可以加快收敛速度,避免陷入局部最小值,并提高模型性能。然而,固定的学习率往往难以适应不同阶段的训练需求。因此,自适应学习率调整策略应运而生,其通过动态调整学习率以响应训练过程中的变化,从而提升优化效率。本文将深入分析几种先进的自适应学习率方法,探讨它们的工作原理、优缺点及在实际问题中的应用效果。
|
1天前
|
机器学习/深度学习 算法 数据可视化
深度学习在图像识别中的应用及其挑战
【5月更文挑战第17天】随着科技的发展,深度学习已经在各个领域中得到了广泛的应用,其中图像识别是其最为重要的应用领域之一。本文将探讨深度学习在图像识别中的应用,以及在实际应用中面临的挑战和解决方案。
|
1天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
【5月更文挑战第17天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域革新的核心技术之一。特别是在图像识别任务中,深度神经网络通过模拟人脑对视觉信息的处理机制,显著提高了识别精度和处理速度。本文聚焦于深度学习在图像识别领域的应用现状,探讨了其背后的关键技术,包括卷积神经网络(CNN)的变体、数据增强、迁移学习以及注意力机制等。同时,文章也分析了当前面临的主要挑战,如数据集偏差、模型泛化能力、计算资源需求及对抗性攻击等,并提出了可能的解决方案。
|
1天前
|
机器学习/深度学习 人工智能 自动驾驶
探索基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第17天】 随着人工智能技术的飞速发展,尤其是深度学习在图像处理和识别领域的突破性进展,自动驾驶汽车的研发与实现已逐渐成为可能。本文旨在探讨深度学习技术在图像识别中的关键作用,并分析其在自动驾驶系统中的具体应用。通过回顾卷积神经网络(CNN)的基本结构和工作原理,本文阐述了深度学习模型如何从大量数据中学习特征,并在复杂的道路环境中准确识别行人、车辆、交通标志等关键要素。此外,文章还讨论了深度学习技术在提高自动驾驶安全性方面的潜力及面临的挑战。
|
1天前
|
机器学习/深度学习 传感器 数据采集
基于深度学习的图像识别技术在自动驾驶中的应用
【5月更文挑战第17天】 本文聚焦于深度学习技术在自动驾驶领域的应用,特别是图像识别系统的设计与优化。文章首先概述了自动驾驶中图像识别的重要性及其挑战,接着介绍了深度学习在此领域内的基础理论与关键技术。随后,文中详细阐述了一个基于卷积神经网络(CNN)的图像识别模型构建过程,包括数据预处理、模型训练和验证策略。最后,通过实验结果分析,展示了所提出方法在提高自动驾驶系统准确性和鲁棒性方面的潜力。本文旨在为自动驾驶研究者和技术开发者提供一种高效、可靠的图像识别解决方案,以促进该技术的实际应用。

热门文章

最新文章

http://www.vxiaotou.com