PYTHON用时变马尔可夫区制转换(MARKOV REGIME SWITCHING)自回归模型分析经济时间序列

简介: PYTHON用时变马尔可夫区制转换(MARKOV REGIME SWITCHING)自回归模型分析经济时间序列

原文链接:http://tecdat.cn/?p=22617


本文提供了一个在统计模型中使用马可夫转换模型模型的例子,来复现Kim和Nelson(1999)中提出的一些结果。它应用了Hamilton(1989)的滤波器和Kim(1994)的平滑器。

%matplotlib inline
import numpy as np
import pandas as pd
import statsmodels.api as sm
from pandas_datareader.data import DataReader
from datetime import datetime
 DataReader(start=datetime(1947, 1, 1), end=datetime(2013, 4, 1))


Hamilton (1989) 马尔可夫转换模型(_Markov -switching_ _model_)


这是对Hamilton(1989)介绍马可夫转换模型(_Markov -switching_ _model_)的开创性论文的复现。该模型是一个4阶的自回归模型,其中过程的平均值在两个区制之间切换。可以这样写。

每个时期,区制都根据以下的转移概率矩阵进行转换。

其中 pij是从区制 i 转移到区制 j 的概率。

该模型类别是时间序列部分中的MarkovAutoregression。为了创建这个模型,我们必须指定k\_regimes=2的区制数量,以及order=4的自回归阶数。默认模型还包括转换自回归系数,所以在这里我们还需要指定switch\_ar=False。

创建后,模型通过极大似然估计进行拟合。使用期望最大化(EM)算法的若干步骤找到好的起始参数,并应用准牛顿(BFGS)算法来快速找到最大值。

\[2\]:
#获取数据
hamilton= pd.read('gndata').iloc\[1:\]
# 绘制数据
hamilton.plot()
# 拟合模型
Markovreg(hamilton)

summary()

我们绘制了经过过滤和平滑处理的衰退概率。滤波指的是基于截至并包括时间tt(但不包括时间t+1,...,Tt+1,...,T)的数据对时间t的概率估计。平滑化是指使用样本中的所有数据对时间t的概率进行估计。

fig, axes = plt.subplots(2, figsize=(7,7))
ax = axes\[0\]
ax.plot(margl_prob\[0\])
ax = axes\[1\]
ax.plot(smoomarginal_pro\[0\])

根据估计的转移矩阵,我们可以计算出衰退与扩张的预期持续时间。


点击标题查阅往期内容


用机器学习识别不断变化的股市状况—隐马尔科夫模型(HMM)股票指数预测实战


01

02

03

04

print(expected_du)

在这种情况下,预计经济衰退将持续约一年(4个季度),扩张约两年半。

Kim, Nelson, and Startz (1998) 三状态方差转换模型。

这个模型展示了带有区制异方差(方差转换)和无平均效应的估计。

模型是:

由于没有自回归成分,这个模型可以用MarkovRegression类来拟合。由于没有平均效应,我们指定趋势='nc'。假设转换方差有三个区制,所以我们指定k\_regimes=3和switching\_variance=True(默认情况下,方差被假定为在不同区制下是相同的)。

raw = pd.read_table(ew ,engine='python')
# 绘制数据集
plot( figsize=(12, 3))

res_kns.summary()

下面我们绘制了处于每个区制中的概率;只有在少数时期,才有可能出现高_方差_区制。

fig, axes = plt.subplots(3, figsize=(10,7))
ax.plot(smoothed_proba\[0\])
ax.plot(smoothed_proba\[2\])
ax.plot(smoothed_proba\[3\])

Filardo (1994) 时变的转移概率


这个模型展示了用时变的转移概率进行估计。

在上述模型中,我们假设转移概率在不同时期是不变的。在这里,我们允许概率随着经济状况的变化而变化。否则,该模型就是Hamilton(1989)的马尔可夫自回归。

每个时期,区制现在都根据以下的时变转移概率矩阵进行转移。

其中 pij,tipij,t 是在 t 期间从区制 i 转移到区制 j 的概率,并定义为。

与其将转移概率作为最大似然法的一部分进行估计,不如估计回归系数βij。这些系数将转移概率与预先确定的或外生的变量xt-1向量联系起来。

\[9\]:
# 用标准差进行标准化
data\['p'\]\['1960-01-01':\].std() / data\['dlip'\]\[:'1959-12-01'\].std()
# 绘制数据
data\['dlip'\].plot( )
 
data\['dmdlleading'\].plot(  figsize=(13,3));

时变的转移概率是由exog_tvtp参数指定的。

这里我们展示了模型拟合的另一个特点--使用随机搜索的MLE起始参数。因为马尔科夫转换模型的特征往往是似然函数的许多局部最大值,执行初始优化步骤有助于找到最佳参数。

下面,我们规定对起始参数向量的20个随机扰动进行检查,并将最好的一个作为实际的起始参数。由于搜索的随机性,我们事先设置了随机数种子,以便结果复制。

markovreg(data, k=2, order=4)
fit(search=20)
summary()

下面我们绘制了经济运行在低生产状态下的平滑概率,并再次将NBER的衰退情况纳入其中进行比较。

ax.plot(smoo\_marg\_prob\[0\])

利用时间变化的转移概率,我们可以看到低生产状态的预期持续时间如何随时间变化。

exp_dura\[0\].plot( figsize=(12,3));

在经济衰退期间,低生产状态的预期持续时间要比经济扩张时高得多。

相关文章
|
1天前
|
存储 数据挖掘 数据处理
使用Python将数据表中的浮点数据转换为整数:详细教程与案例分析
使用Python将数据表中的浮点数据转换为整数:详细教程与案例分析
7 2
|
1天前
|
前端开发 JavaScript TensorFlow
如何将训练好的Python模型给JavaScript使用?
本文介绍了如何将TensorFlow模型转换为Web格式以实现浏览器中的实际应用。首先,简述了已有一个能够检测扑克牌的TensorFlow模型,目标是将其部署到Web上。接着,讲解了TensorFlow.js Converter的作用,它能将Python API创建的GraphDef模型转化为TensorFlow.js可读取的json格式,用于浏览器中的推理计算。然后,详细说明了Converter的安装、用法及不同输入输出格式,并提供了转换命令示例。最后,文中提到了模型转换后的实践步骤,包括找到导出的模型、执行转换命令以及在浏览器端部署模型的流程。
17 3
|
1天前
|
索引 Python
【Python操作基础】——序列
【Python操作基础】——序列
|
1天前
|
机器学习/深度学习 TensorFlow API
Python深度学习基于Tensorflow(3)Tensorflow 构建模型
Python深度学习基于Tensorflow(3)Tensorflow 构建模型
56 2
|
1天前
|
语音技术 开发者 Python
python之pyAudioAnalysis:音频特征提取分析文档示例详解
python之pyAudioAnalysis:音频特征提取分析文档示例详解
15 0
|
1天前
|
数据可视化 大数据 Python
python大数据分析处理
python大数据分析处理
12 0
|
1天前
|
机器学习/深度学习 人工智能 大数据
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
|
1天前
|
数据可视化 数据挖掘 Python
Python用 tslearn 进行时间序列聚类可视化
Python用 tslearn 进行时间序列聚类可视化
|
1天前
|
Python 数据可视化 索引
PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化
PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化
PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化
|
自然语言处理 数据可视化 数据挖掘
如何用Python做舆情时间序列可视化?
如何批量处理评论信息情感分析,并且在时间轴上可视化呈现?舆情分析并不难,让我们用Python来实现它吧。 痛点 你是一家连锁火锅店的区域经理,很注重顾客对餐厅的评价。
1797 0
http://www.vxiaotou.com