matlab使用Copula仿真优化市场风险数据VaR分析

简介: matlab使用Copula仿真优化市场风险数据VaR分析

使用Copula建模相关默认值

 

此示例探讨了如何使用多因素copula模型模拟相关的交易对手违约。

鉴于违约风险敞口,违约概率和违约信息损失,估计交易对手组合的潜在损失。一个creditDefaultCopula对象用于每个债务人的信用与潜在变量模型。潜在变量由一系列加权潜在信用因子以及每个债务人的特殊信用因子组成。潜在变量根据其默认概率映射到每个方案的债务人的默认或非默认状态。该creditDefaultCopula对象支持投资组合风险度量,交易对手级别的风险贡献以及模拟收敛信息。

这个例子还探讨了风险度量对用于模拟的copula(高斯copula与t copula)类型的敏感性。


加载和检查投资组合数据

投资组合包含100个交易对手及其相关的信用风险敞口(默认值EAD),违约概率(PD)和默认损失(LGD)。使用creditDefaultCopula对象,您可以模拟某个固定时间段(例如,一年)的默认值和损失。的EAD,PD和LGD输入必须是针对特定的时间范围。

在此示例中,每个交易对手都使用一组权重映射到两个基础信用因子。该Weights2F变量是一个NumCounterparties-by-3矩阵,其中每一行包含一个单一的对方的权重。前两列是两个信用因子的权重,最后一列是每个交易对手的特殊权重。此示例(FactorCorr2F)中还提供了两个基本因子的相关矩阵。


加载CreditPortfolioData.mat

使用creditDefaultCopula投资组合信息和因子相关性初始化对象。



rng('default');
cc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F);


cc.VaRLevel = 0.99;
DISP(CC)
creditDefaultCopula with properties:


FactorCorrelation:[2x2 double]
VaRLevel:0.9900
PortfolioLosses:[]
cc.Portfolio(1:5,:)
ans =
5x5表
ID EAD PD LGD重量
__ ______ _________ ____ ____________________
1 21.627 0.0050092 0.35 0.35 0 0.65
2 3.2595 0.060185 0.35 0 0.45 0.55
3 20.391 0.11015 0.55 0.15 0 0.85
4 3.7534 0.0020125 0.35 0.25 0 0.75
5 5.7193 0.060185 0.35 0.35 0 0.65
 

模拟模型和绘制潜在损失

使用该simulate函数模拟多因素模型。默认情况下,使用高斯copula。此函数在内部将已实现的潜在变量映射到默认状态,并计算相应的损失。在模拟之后,creditDefaultCopula对象使用模拟结果填充PortfolioLosses和CounterpartyLosses属性。



cc = simulate(cc,1e5);
DISP(CC)
creditDefaultCopula with properties:


FactorCorrelation:[2x2 double]
VaRLevel:0.9900
PortfolioLosses:[1x100000双]

该portfolioRisk函数返回总投资组合损失分布的风险度量,并且可选地返回它们各自的置信区间。VaRLevel在creditDefaultCopula对象的属性中设置的级别报告风险值(VaR)和条件风险值(CVaR)。



[pr,pr_ci] = portfolioRisk(cc);


DISP(PR)


DISP(pr_ci)

投资组合风险衡量
EL Std VaR CVaR
______ ______ ______ ______
24.774 23.693 101.57 120.22

风险衡量的置信区间:
EL Std VaR CVaR
________________ ________________ ________________ _______________
24.627 24.92 23.589 23.797 100.65 102.82 119.1 121.35

看看投资组合损失的分布。预期损耗(EL),VaR和CVaR标记为垂直线。由VaR和EL之间的差异给出的经济资本显示为EL和VaR之间的阴影区域。



plotline = @(x,color)plot([xx],ylim,'LineWidth',2,'Color',color);


cvarline = plotline(pr.CVaR,'m');
%遮蔽预期损失和经济资本的领域。
plotband = @(x,color)patch([x fliplr(x)],[0 0 repmat(max(ylim),1,2)],...
color,'FaceAlpha',0.15);
elband = plotband([0 pr.EL],'blue');
ulband = plotband([pr.EL pr.VaR],'red');


找出交易对手的集中风险

使用该riskContribution函数查找投资组合中的集中度风险。riskContribution返回每个交易对手对投资组合EL和CVaR的贡献。这些附加值贡献与相应的总投资组合风险度量相加。



rc = riskContribution(cc);
报告EL和CVaR的风险贡献百分比。

RC(1:5,:)
ans =


ID EL Std VaR CVaR
__ _________ __________ _______ _________
1 0.038604 0.02495 0.10482 0.12868
2 0.067068 0.036472 0.17378 0.24527
3 1.2527 0.62684 2.0384 2.3103
4 0.0023253 0.00073407 0 0.0026274
5 0.11766 0.042185 0.27028 0.26223
 

通过CVaR贡献找出风险最大的交易对手。




[rc_sorted,idx] = sortrows(rc,'CVaR','descend');
rc_sorted(1:5,:)
ans =


ID EL Std VaR CVaR
__ _______ ______ ______ ______
89 2.261 2.2158 8.1095 9.2257
22 1.5672 1.8293 6.275 7.4602
66 0.85227 1.4063 6.3827 7.2691
16 1.6236 1.5011 5.8949 7.1083

绘制交易对手风险和CVaR贡献。具有最高CVaR贡献的交易对手以红色和橙色绘制。




pointSize = 50;
colorVector = rc_sorted.CVaR;
scatter(cc.Portfolio(idx,:)。EAD,rc_sorted.CVaR,...
pointSize,colorVector,'filled')
colormap('jet')

用置信带研究模拟收敛性

使用该confidenceBands函数来研究模拟的收敛性。默认情况下,会报告CVaR置信区间,但使用可选RiskMeasure参数支持所有风险度量的置信区间。



cb = confidenceBands(cc);
%置信带存储在表格中。
CB(1:5,:)
ans =


NumScenarios降低CVaR上限
____________ ______ ______ ______
1000 113.92 124.76 135.59
2000 111.02 117.74 124.45
3000 113.58 118.97 124.36
4000 113.06 117.44 121.81
5000 114.38 118.99 123.6

绘制置信区间以查看估算收敛的速度。

找到必要数量的方案以获得特定宽度的置信区间。



width =(cb.Upper - cb.Lower)./ cb.CVaR;


plot(cb.NumScenarios,width * 100,'LineWidth',2);


%找到置信带在
%CVaR的1%(双侧)范围内的点。
thresh = 0.02;
scenIdx = find(width <= thresh,1,'first');
scenValue = cb.NumScenarios(scenIdx);
widthValue = width(scenIdx);
 


比较Gaussian和t Copulas的尾部风险

切换到t copula会增加交易对手之间的默认关联。这导致投资组合损失的尾部分布更加严重,并且在压力情景中导致更高的潜在损失。

cc_t = simulate(cc,1e5,'Copula','t');
pr_t = portfolioRisk(cc_t);
了解投资组合风险如何随着t copula而变化。
高斯copula的投资组合风险:
EL Std VaR CVaR
______ ______ ______ ______
24.774 23.693 101.57 120.22
t copula的投资组合风险(dof = 5):
EL Std VaR CVaR
______ ______ ______ ______
24.924 38.982 186.33 251.38
 

比较每种型号的尾部损失。

使用具有五个自由度的t copula,尾部风险测量值VaR和CVaR显着更高。t copulas 的默认相关性较高,因此有多个交易对手默认的情况更多。自由度的数量起着重要作用。对于非常高的自由度,使用t copula的结果与使用高斯copula的结果相似。五是自由度非常低,因此结果显示出显着的差异。此外,这些结果强调极端损失的可能性对于copula的选择和自由度的数量非常敏感。

相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
1天前
|
机器学习/深度学习 算法 安全
m基于Q-Learning强化学习的路线规划和避障策略matlab仿真
MATLAB 2022a仿真实现了Q-Learning算法在路线规划与避障中的应用,展示了智能体在动态环境中学习最优路径的过程。Q-Learning通过学习动作价值函数Q(s,a)来最大化长期奖励,状态s和动作a分别代表智能体的位置和移动方向。核心程序包括迭代选择最优动作、更新Q矩阵及奖励机制(正奖励鼓励向目标移动,负奖励避开障碍,探索奖励平衡探索与利用)。最终,智能体能在复杂环境中找到安全高效的路径,体现了强化学习在自主导航的潜力。
7 0
|
2天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
2天前
|
数据可视化 算法
MATLAB Simulink晶闸管的特性分析
MATLAB Simulink晶闸管的特性分析
9 2
|
2天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
2天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
9 1
|
2天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
2天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
16 1
|
2天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
2天前
|
算法 数据安全/隐私保护
matlab程序,傅里叶变换,频域数据,补零与不补零傅里叶变换
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章

http://www.vxiaotou.com