【Linux系统编程】解析获取和设置文件信息与权限的Linux系统调用

简介: 【Linux系统编程】解析获取和设置文件信息与权限的Linux系统调用

1. 获取文件信息

1.1 stat系列函数

在Linux系统中,有一系列函数用于获取文件的状态信息,这些函数包括stat(), fstat(), lstat()fstatat()

int stat(const char *path, struct stat *buf);
int fstat(int fd, struct stat *buf);
int lstat(const char *path, struct stat *buf);
int fstatat(int dirfd, const char *pathname, struct stat *buf, int flags);
  • stat(): 返回与此命名文件有关的信息结构。
  • fstat(): 获得已在描述符fd上打开文件的有关信息。
  • lstat(): 与stat()类似,但当遇到符号文件时,返回符号链接的有关信息,而不是链接引用的文件。
  • fstatat(): 为一个相对于当前打开目录的路径名返回文件统计信息。
参数与返回值
  • flags: 控制是否跟随符号链接。
  • AT_SYMLINK_NOFOLLOW: 不会跟随符号链接,返回链接本身信息。

返回值:成功返回0,出错返回-1,并设置errno值。

// C++ 示例代码
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
struct stat buf;
int result = stat("/path/to/file", &buf);

1.2 stat结构

stat结构包含了文件的各种属性,如文件类型、大小、权限等。

struct stat {
    dev_t     st_dev;     /* ID of device containing file */
    ino_t     st_ino;     /* inode number */
    mode_t    st_mode;    /* protection */
    nlink_t   st_nlink;   /* number of hard links */
    uid_t     st_uid;     /* user ID of owner */
    gid_t     st_gid;     /* group ID of owner */
    dev_t     st_rdev;    /* device ID (if special file) */
    off_t     st_size;    /* total size, in bytes */
    blksize_t st_blksize; /* blocksize for filesystem I/O */
    blkcnt_t  st_blocks;  /* number of 512B blocks allocated */
    time_t    st_atime;   /* time of last access */
    time_t    st_mtime;   /* time of last modification */
    time_t    st_ctime;   /* time of last status change */
};

2. 文件权限测试

2.1 access系列函数

access()faccessat()函数用于测试当前进程是否有权访问指定文件。

int access(const char *pathname, int mode);
int faccessat(int dirfd, const char *pathname, int mode, int flags);
参数与返回值
  • mode: 测试权限的类型。
  • R_OK: 测试读权限
  • W_OK: 测试写权限
  • X_OK: 测试执行权限
  • F_OK: 测试文件是否存在

返回值:成功返回0,出错返回-1,并设置errno值。

// C++ 示例代码
#include <unistd.h>
if (access("/path/to/file", R_OK) == 0) {
    // 可读
}

3. 改变文件权限和所有权

3.1 chmod和chown系列函数

chmod(), fchmod(), fchmodat()用于改变文件的访问权限。

int chmod(const char *path, mode_t mode);
int fchmod(int fd, mode_t mode);
int fchmodat(int dirfd, const char *pathname, mode_t mode, int flags);

chown(), fchown(), fchownat()lchown()用于改变文件的所有者和组。

int chown(const char *path, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);
int fchownat(int dirfd, const char *pathname, uid_t owner, gid_t group, int flags);
int lchown(const char *path, uid_t owner, gid_t group);
参数与返回值
  • mode: 新的文件模式。
  • ownergroup: 新的文件所有者和组。

返回值:成功返回0,出错返回-1,并设置errno值。

// C++ 示例代码
#include <sys/types.h>
#include <sys/stat.h>
chmod("/path/to/file", S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);

4. 源码实现

4.1 stat函数在Linux源码中的实现

stat()函数在Linux内核源码中的实现位于fs/stat.c文件中,主要通过vfs_stat()函数来完成。

SYSCALL_DEFINE2(stat, const char __user *, filename, struct stat __user *, statbuf)
{
    struct kstat stat;
    int error = vfs_stat(filename, &stat);
    // ...
    return error;
}

4.2 chmod函数在Linux源码中的实现

chmod()函数在Linux内核源码中的实现位于fs/open.c文件中,主要通过do_fchmod()函数来完成。

SYSCALL_DEFINE2(chmod, const char __user *, filename, umode_t, mode)
{
    return do_fchmodat(AT_FDCWD, filename, mode);
}

5. 总结

在Linux系统中,获取和设置文件信息与权限是非常常见的操作。通过statchmod等系统调用,我们可以方便地完成这些任务。这些系统调用不仅提供了丰富的功能,而且在内核级别有着高效的实现。

正如Bjarne Stroustrup在《The C++ Programming Language》中所说:“C++是一种设计用于系统编程的语言,但也提供了足够的抽象能力,以完成用户级应用程序。”这些系统调用正是这一设计思想的体现。

在探究这些系统调用的工作原理时,我们不仅可以更深入地理解操作系统和文件系统,还可以体验到编程带来的无限可能性和创造力。

这就是Linux系统调用在获取和设置文件信息与权限方面的全面介绍。希望这篇文章能帮助你更好地理解这一主题。

结语

在我们的编程学习之旅中,理解是我们迈向更高层次的重要一步。然而,掌握新技能、新理念,始终需要时间和坚持。从心理学的角度看,学习往往伴随着不断的试错和调整,这就像是我们的大脑在逐渐优化其解决问题的“算法”。

这就是为什么当我们遇到错误,我们应该将其视为学习和进步的机会,而不仅仅是困扰。通过理解和解决这些问题,我们不仅可以修复当前的代码,更可以提升我们的编程能力,防止在未来的项目中犯相同的错误。

我鼓励大家积极参与进来,不断提升自己的编程技术。无论你是初学者还是有经验的开发者,我希望我的博客能对你的学习之路有所帮助。如果你觉得这篇文章有用,不妨点击收藏,或者留下你的评论分享你的见解和经验,也欢迎你对我博客的内容提出建议和问题。每一次的点赞、评论、分享和关注都是对我的最大支持,也是对我持续分享和创作的动力。

目录
相关文章
|
5天前
|
Linux
【Linux系统编程】基础指令(二)(下)
【Linux系统编程】基础指令(二)
|
5天前
|
Linux C语言
【Linux系统编程】基础指令(二)(上)
【Linux系统编程】基础指令(二)
|
5天前
|
Java 开发工具 Maven
java解析apk获取应用信息
请注意,你需要替换"path/to/your/apkfile.apk"为你的APK文件的实际路径。
11 0
|
5天前
|
Rust 安全 程序员
使用Rust进行系统编程:安全性优势深度解析
【5月更文挑战第14天】Rust,Mozilla开发的系统编程语言,以其内存安全、并发支持和静态类型系统在系统编程中脱颖而出。所有权和借用检查机制消除内存错误,无锁并发原语提升安全性,静态类型减少运行时错误,最小权限原则降低权限风险。强大的社区支持和安全审计进一步确保了代码的安全性和稳定性,使Rust成为安全高效系统编程的理想选择。
|
5天前
|
安全 程序员 网络安全
解析编程中的技术迷题:常见挑战与应对策略
解析编程中的技术迷题:常见挑战与应对策略
6 1
|
5天前
|
Linux API
Linux系统编程之文件编程常用API回顾和文件编程一般步骤
Linux系统编程之文件编程常用API回顾和文件编程一般步骤
Linux系统编程之文件编程常用API回顾和文件编程一般步骤
|
5天前
|
API 调度
xenomai内核解析--双核系统调用(三)--如何为xenomai添加一个系统调用
本文介绍了如何在Xenomai中添加自定义系统调用`get_timer_hits()`,该调用用于获取CPU定时器中断次数。首先,在`syscall.h`中定义127号系统调用,并在`clock.h`和`clock.c`中声明和实现该函数。接着,更新libcobalt库以包含新接口。最后,提供了一个示例应用,演示如何在实时任务中使用此系统调用。编译内核和库后,运行示例程序显示定时器中断次数,体现了Xenomai的tickless特性。
20 1
|
5天前
|
Linux 编译器 调度
xenomai内核解析--双核系统调用(二)--应用如何区分xenomai/linux系统调用或服务
本文介绍了如何将POSIX应用程序编译为在Xenomai实时内核上运行的程序。
37 1
xenomai内核解析--双核系统调用(二)--应用如何区分xenomai/linux系统调用或服务
|
5天前
|
存储 Linux API
xenomai内核解析--双核系统调用(一)
本文介绍了Xenomai内核系统调用的实现,探讨了在Linux内核与Xenomai实时内核共存时,系统调用如何区分和交互。系统调用是用户空间与内核空间通信的关键,它提供了硬件抽象、系统稳定性、安全性和可移植性。在32位系统中,通过`int 0x80`指令触发,而在64位系统中,使用`syscall`指令。Xenomai通过I-pipe拦截系统调用,区分实时与非实时任务,并通过`cobalt_syscalls`表执行相应操作。文章还详细解析了系统调用表的生成和权限控制机制。
30 1
xenomai内核解析--双核系统调用(一)
|
5天前
|
弹性计算 运维 Shell
http://www.vxiaotou.com